Author Search Result

[Author] Fumiyuki ADACHI(201hit)

1-20hit(201hit)

  • Wideband Wireless Access Based on DS-CDMA

    Fumiyuki ADACHI  Mamoru SAWAHASHI  

     
    INVITED PAPER

      Vol:
    E81-B No:7
      Page(s):
    1305-1316

    Wideband wireless access based on direct sequence code division multiple access, called coherent multi-rate W-CDMA in this paper, designed for next generation mobile communications systems is introduced. It employs inter-cell asynchronous operation with a fast cell search algorithm, orthogonal multi-spreading factor (SF) forward links, and pilot symbol assisted coherent reverse and forward links. Inter-cell asynchronous cell site operation facilitates the continuous deployment of the system from outdoors to indoors. An orthogonal multi-SF forward link allows flexible offering of different multi-rate services to users without losing orthogonality. Gains in the radio link capacity and coverage are obtained from the use of coherent Rake combining and fast transmit power control (TPC) in both forward and reverse links. Computer simulation and field experiment results of the coherent multi-rate W-CDMA radio link performance are presented. Also presented are interference cancellation and adaptive antenna array techniques that can significantly improve the link capacity and coverage.

  • Joint Iterative Transmit/Receive FDE & FDIC for Single-Carrier Block Transmissions

    Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1396-1404

    In this paper, we propose a novel iterative transmit/receive equalization technique for single-carrier (SC) block transmission in a severe frequency-selective fading channel. Iterative frequency-domain inter-symbol interference (ISI) cancellation (FDIC) is introduced to the previously proposed joint iterative transmit/receive frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion. 1-tap FDE is employed at the transmitter. At the receiver, a 1-tap FDE and FDIC are jointly used and they are updated in an iterative manner. The transmit FDE weight is derived based on the MMSE criterion by taking into account the reduction of residual ISI in the receiver. To derive the weight, the transmitter assumes that the receiver can partially reduce the residual ISI after the FDIC. We conduct a computer simulation to investigate the achievable bit error rate (BER) performance to confirm the effectiveness of our proposed technique.

  • Capacity-Fairness Controllable Scheduling Algorithms for Single-Carrier FDMA

    Takayoshi IWATA  Hiroyuki MIYAZAKI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1474-1482

    Scheduling imposes a trade-off between sum capacity and fairness among users. In some situations, fairness needs to be given the first priority. Therefore, a scheduling algorithm which can flexibly control sum capacity and fairness is desirable. In this paper, assuming the single-carrier frequency division multiple access (SC-FDMA), we propose three scheduling algorithms: modified max-map, proportional fairness (PF)-map, and max-min. The available subcarriers are grouped into a number of subcarrier-blocks each having the same number of subcarriers. The scheduling is done on a subcarrier-block by subcarrier-block basis to take advantage of the channel frequency-selectivity. The same number of non-contiguous subcarrier-blocks is assigned to selected users. The trade-off between sum capacity and fairness is controlled by changing the number of simultaneously scheduling users per time-slot. Capacity, fairness, and peak-to-average power ratio (PAPR) when using the proposed scheduling algorithms are examined by computer simulation.

  • Effects of Orthogonal Spreading and Rake Combining on DS-CDMA forward Link in Mobile Radio

    Fumiyuki ADACHI  

     
    PAPER-Radio Communication

      Vol:
    E80-B No:11
      Page(s):
    1703-1712

    The transmission performance of DS-CDMA forward link with orthogonal spreading and Rake combining is evaluated under multipath fading environments. A simple-to-use expression for the conditional instantaneous signal-to-interference plus background noise power ratio (SIR) is derived, assuming an M-finger Rake combiner. Using the derived expression, the forward link SIRs of either orthogonal spreading or random spreading can be conveniently computed. The link performance in terms of the average bit error rate (BER) and capacity (the maximum number of allowable users) is evaluated by a Monte Carlo simulation assuming ideal BPSK data modulation. In frequency selective multipath fading, the orthogonality of the forward link is destroyed to some extent and link performance approaches that of random spreading. The extent of orthogonality destruction depends on the multipath channel power delay profile shape and number of resolved paths (for an exponential profile, it is defined as the number of stronger resolved paths that capture 90% of the total received power); so their influences on the link performance are discussed. Also simulated is the distribution of the BERs in a radio coverage area taking into account the path loss and shadowing to evaluate the link capacity at a certain outage probability.

  • Frequency-Domain Eigenbeam-SDM and Equalization for Single-Carrier Transmissions

    Kazuyuki OZAKI  Akinori NAKAJIMA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1521-1530

    In mobile communications, the channel consists of many resolvable paths with different time delays, resulting in a severely frequency-selective fading channel. The frequency-domain equalization (FDE) can take advantage of the channel selectivity and improve the bit error rate (BER) performance of the single-carrier (SC) transmission. Recently, multi-input multi-output (MIMO) multiplexing is gaining much attention for achieving very high speed data transmissions with the limited bandwidth. Eigenbeam space division multiplexing (E-SDM) is known as one of MIMO multiplexing techniques. In this paper, we propose frequency-domain SC E-SDM for SC transmission. In frequency-domain SC E-SDM, the orthogonal transmission channels to transmit different data in parallel are constructed at each orthogonal frequency. At a receiver, FDE is used to suppress the inter-symbol interference (ISI). In this paper, the transmit power allocation and adaptive modulation based on the equivalent channel gains after performing FDE are applied. The BER performance of the frequency-domain SC E-SDM in a severe frequency-selective Rayleigh fading channel is evaluated by computer simulation.

  • Frequency-Domain Block Signal Detection for Single-Carrier Transmission

    Tetsuya YAMAMOTO  Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2104-2112

    One-tap frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can significantly improve the bit error rate (BER) performance of single-carrier (SC) transmission in a frequency-selective fading channel. However, a big performance gap from the theoretical lower bound still exists due to the presence of residual inter-symbol interference (ISI) after MMSE-FDE. In this paper, we point out that the frequency-domain received SC signal can be expressed using the matrix representation similar to the multiple-input multiple-output (MIMO) multiplexing and therefore, signal detection schemes developed for MIMO multiplexing, other than simple one-tap MMSE-FDE, can be applied to SC transmission. Then, for the reception of SC signals, we propose a new signal detection scheme, which combines FDE with MIMO signal detection, such as MMSE detection and Vertical-Bell Laboratories layered space-time architecture (V-BLAST) detection (we call this frequency-domain block signal detection). The achievable average BER performance using the proposed frequency-domain block signal detection is evaluated by computer simulation.

  • Pilot-Assisted Channel Estimation Using Adaptive Interpolation for Coherent Rake Reception of DS-CDMA Signals

    Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:7
      Page(s):
    2962-2970

    In this paper, a pilot-assisted channel estimation using adaptive interpolation (in which, different interpolation filter tap weights is used for different symbol position) is proposed. Each set of tap weights is updated using the normalized least mean square (NLMS) algorithm, the reference signal for which is obtained by decision feedback and reverse modulation of the received data symbol. In order to reduce the number of tap weight sets and to achieve fast convergence, the conjugate centrosymmetry property of the tap weight set is used. The average bit error rate (BER) performance in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. Also evaluated is the robustness against the frequency offset between a transmitter and a receiver.

  • On Cellular MIMO Channel Capacity

    Koichi ADACHI  Fumiyuki ADACHI  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2366-2373

    To increase the transmission rate without bandwidth expansion, the multiple-input multiple-output (MIMO) technique has recently been attracting much attention. The MIMO channel capacity in a cellular system is affected by the interference from neighboring co-channel cells. In this paper, we introduce the cellular channel capacity and evaluate its outage capacity, taking into account the frequency-reuse factor, path loss exponent, standard deviation of shadowing loss, and transmission power of a base station (BS). Furthermore, we compare the cellular MIMO downlink channel capacity with those of other multi-antenna transmission techniques such as single-input multiple-output (SIMO) and space-time block coded multiple-input single-output (STBC-MISO). We show that the optimum frequency-reuse factor F that maximizes 10%-outage capacity is 3 and both 50%- and 90%-outage capacities is 1 irrespective of the type of multi-antenna transmission technique, where q%-outage capacity is defined as the channel capacity that gives an outage probability of q%. We also show that the cellular MIMO channel capacity is always higher than those of SIMO and STBC-MISO.

  • Transmit Power Efficiency of Multi-Hop MRC Diversity for a Virtual Cellular Network

    Imane DAOU  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER

      Vol:
    E88-B No:9
      Page(s):
    3643-3648

    In virtual cellular network (VCN), proposed for high-speed packet mobile communications, the signal transmitted from a mobile terminal is received by wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this letter, we apply the multi-hop maximal ratio combining (MHMRC) diversity and propose the route modification algorithm in order to improve transmit power efficiency degradation caused by the carrier frequency difference between the control and the data communication channels for VCN. The transmit power efficiency and the distribution of the number of hops are evaluated by computer simulation for a VCN.

  • Comparative Study of Various Frequency Equalization Techniques for Downlink of a Wireless OFDM-CDMA System

    Tomoki SAO  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    352-364

    In a wireless OFDM-CDMA system, the data-modulated symbol of each user is spread over multiple subcarriers in the frequency domain using a given spreading code. For the downlink (base-to-mobile) transmissions, a set of orthogonal spreading codes defined in the frequency domain is used so that different users data can be transmitted using the same set of subcarriers. The frequency selectivity of the radio channel produces the orthogonality destruction. There are several frequency equalization combining techniques to restore orthogonality, i.e., orthogonal restoration combining (ORC), control equalization combining (CEC) that is a variant of ORC, threshold detection combining (TDC), and minimum mean square error combining (MMSEC). The ORC can restore orthogonality among users but produces noise enhancement. However, CEC, TDC, and MMSEC can balance the orthogonality restoration and the noise enhancement. In this paper, we investigate, by means of computer simulation, how the BER performances achievable with ORC, CEC, TDC, and MMSEC are impacted by the propagation parameters (path time delay difference and fading maximum Doppler frequency), number of users, pilot power used for channel estimation, and channel estimation scheme. To acquire a good understanding of ORC, CEC, TDC, and MMSEC, how they differ with respect to the combining weights is discussed. Also, the downlink transmission performances of DS-CDMA and OFDM-CDMA are compared when the same transmission bandwidth is used. How much better performance is achieved with OFDM-CDMA than with DS-CDMA using ideal rake combining is discussed.

  • Effect of Transmit Power Limitation in Power Controlled DS-CDMA

    Akihito KATOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:2
      Page(s):
    757-768

    In DS-CDMA mobile communications systems, transmit power control (TPC) is an indispensable technique on the reverse (mobile-to-base) links to minimize the received signal power variations produced by multipath fading, shadowing, and distance dependent path loss. However, a large transmit power is sometimes required with TPC. This is an undesirable burden for a mobile station because the transmit power amplifier must have a fairly wide range of linearity. Furthermore, in the case of cellular systems, a large interference is produced to other cells, thereby reducing reverse link capacity. In this paper, we study the effect of the mobile transmitter power limitation on the transmission performance and the required transmit power that is directly related to the other cell interference.

  • Modeling of DS-CDMA Transmit Power Control in a Fast Fading Channel with Antenna Diversity

    Akihito KATOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:2
      Page(s):
    769-776

    In DS-CDMA mobile radio communications systems, transmit power control (TPC) is indispensable to regulate the variations in the received signal power produced by multipath fading. However, a practical TPC raises and lowers the mobile transmit power only at discrete time instants (the TPC rate is on the order of 1-2 kHz) and by a finite step size of the order of 1 dB. Therefore, TPC cannot completely compensate the received signal power variations and hence, the transmission performance degrades in a fast fading channel. The objective of this paper is to understand how TPC acts in a fast fading channel with antenna diversity reception and, based on this understanding, to model the TPC operation.

  • A Weighted Delay Transmit Diversity System Combined with Antenna Diversity Reception for DS-CDMA Mobile Radio

    Akihito KATO  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2211-2215

    In this paper, we study a delay transmit diversity system combined with antenna diversity reception that transmits the time-delayed and weighted versions of the same signal from multiple antennas. At a receiver, multiple receive antennas are used and all delayed signals received on multiple antennas are coherently combined by a Rake receiver. The set of optimum antenna weights for maximizing the received signal-to-noise power ratio (SNR) after Rake combining is theoretically analyzed to show that the optimum solution is to transmit only from the best antenna that has the maximum equivalent channel gain seen after Rake combining. The bit error rate (BER) performance is theoretically analyzed and evaluated by computer simulation. The combined effect of transmit diversity and transmit power control (TPC) is also investigated.

  • Theoretical Analysis of MC-CDMA Forward Link Performance in the Presence of Pure Impulsive Interference

    Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E86-B No:8
      Page(s):
    2425-2432

    In this paper, expressions are derived for the bit error rate (BER) of the multicarrier-CDMA (MC-CDMA) downlink in the presence of pure impulsive interference and a frequency-selective fading and the BER performance is numerically evaluated by a Monte-Carlo simulation method. Minimum mean square error combining (MMSEC) and orthogonal restoration combining (ORC) are considered for frequency-domain equalization. The joint weight of antenna diversity reception using maximal ratio combining (MRC) and frequency equalization combining is derived. The MC-CDMA transmission performance in the presence of pure impulsive interference is compared with that of DS-CDMA transmission.

  • Frequency-Domain Equalization for Broadband Single-Carrier Multiple Access Open Access

    Fumiyuki ADACHI  Hiromichi TOMEBA  Kazuki TAKEDA  

     
    INVITED PAPER

      Vol:
    E92-B No:5
      Page(s):
    1441-1456

    Single-carrier (SC) multiple access is a promising uplink multiple access technique because of its low peak-to-average power ratio (PAPR) property and high frequency diversity gain that is achievable through simple one-tap frequency-domain equalization (FDE) in a strong frequency-selective channel. The multiple access capability can be obtained by combining either frequency division multiple access (FDMA) or code division multiple access (CDMA) with SC transmission. In this article, we review the recent research on the SC multiple access techniques with one-tap FDE. After introducing the principle of joint FDE/antenna diversity combining, we review various SC multiple access techniques with one-tap FDE, i.e., SC-FDMA, SC-CDMA, block spread CDMA, and delay-time/CDMA.

  • Impact of Shadowing Correlation on Spectrum Efficiency of a Power Controlled Cellular System

    Kentarou SAWA  Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    1964-1969

    Independent shadowing losses are often assumed for computing the frequency reuse distance of cellular mobile communication systems. However, shadowing losses may be partially correlated since the obstacles surrounding a mobile station block similarly the desired signal and interfering signals. We investigate, by computer simulation, how the shadowing correlation impacts the frequency reuse distance of a power controlled cellular system. It is pointed out that the shadowing correlation impacts the frequency reuse distance differently for the uplink and downlink.

  • Adaptive Prediction Iterative Channel Estimation for Combined Antenna Diversity and Coherent Rake Reception of Multipath-Faded DSSS Signals

    Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:11
      Page(s):
    2405-2415

    Adaptive prediction iterative channel estimation is presented for combined antenna diversity and coherent rake reception of direct sequence spread spectrum (DSSS) signals. Its first stage uses pilot-aided adaptive prediction channel estimation, while the succeeding iteration stages use decision feedback and moving average filtering for channel re-estimation. The bit error rate (BER) performance of DSSS signal computer simulations evaluate transmission in a frequency selective Rayleigh fading channel. It is found that the adaptive prediction iterative channel estimation is superior to the non adaptive iterative channel estimation using the conventional weighted multi-slot averaging (WMSA) filtering at the first iteration stage, particularly in a fast fading channel.

  • Uplink Link Capacity of DS-CDMA Packet Mobile Communications with Rake Combining and Transmit Power Control

    ZhiSen WANG  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2203-2206

    Without transmit power control (TPC) and Rake combining, the uplink capacity of a direct sequence code division multiple access (DS-CDMA) packet mobile communication system significantly degrades due to the near-far problem and multipath fading. In this letter, assuming a single cell system with an interference-limited channel, the impact of the joint use of Rake combining and TPC on the uplink capacity is evaluated by computer simulation. Slow TPC is found to give a link capacity larger than fast TPC. This is because, with slow TPC, the received signal power variations due to fading remain intact and this results in a larger capture effect.

  • Performance Improvement by Frequency-Domain Interleaving for OFDM/TDM Using MMSE-FDE in a Wireless Channel

    Haris GACANIN  Fumiyuki ADACHI  

     
    LETTER

      Vol:
    E92-B No:5
      Page(s):
    1813-1817

    The use of frequency-domain interleaving on a frame-by-frame basis for orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (OFDM/TDM) is presented. In conventional OFDM, FDE is not designed to exploit the channel frequency-selectivity and consequently, the frequency diversity gain cannot be obtained. To further improve the bit error rate (BER) performance of conventional OFDM an interleaving technique may be applied, but FDE cannot be fully exploited. In this letter, the OFDM/TDM signal (i.e., several concatenated OFDM signals) frequency components are interleaved at the transmitter and then, minimum mean square error frequency-domain equalization (MMSE-FDE) is applied at the receiver to obtain a larger frequency diversity gain. It is shown that frequency-domain interleaving on a frame-by-frame basis for OFDM/TDM using MMSE-FDE achieves improved BER performance in comparison with conventional OFDM due to enhanced frequency diversity gain.

  • FOREWORD

    Fumiyuki ADACHI  

     
    FOREWORD

      Vol:
    E88-B No:2
      Page(s):
    425-426
1-20hit(201hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.